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CHARGE CONJUGATION, SIGNATURE AND TWISTS *
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The distinction between charge conjugation and signature in the analysis of quark
diagrams is discussed. The signature twist is different from the quark-line twist (which,
for mesons, is related to charge conjugation). They coincide only in the planar level,

“Is the twist on a meson line related to charge conjugation or to signature?”” This
question is a well-known source of confusion. We hope to clarify it in this paper.

Let us consider a one-boundary amplitude with n external mesons whicl have a
definite order along the boundary (fig. 1). We do not assume anything concerning
the number of handles. Therefore, this amplitude may represent the planar ampli-
tude [1] with the specified order (namely, the b = 1,4 = Q part of the n-point func-
tion). The amplitude may also represent any arbitrary quark diagram, or a sum over
many quark diagrams, with b = 1. (The quark diagrams can be defined as in ref. [2].
We start with particle diagrams, whose lines represent hadrons, and then draw the
corresponding quark diagrams. The particle diagrams may be multi-Regge diagrinns,
the diagrams of the dual models, ¢* diagrams where the ficld ¢ represents a meson,
reggeon-ficld-theory diagrams, ete.)

We assume that the spectrum of the external mesons is given by b = | diagrams.
Assuming SU(V) invariance, all mesons appear in M2 degenerate multiplets (only
when we include the b = 2 terms of the propagator, the SU(N) singlet is not degen-
erate with the (V2 — 1) multiplet). We specify the states of the external mesons in
the following way: The letter D, for example, in fig. 1 stands for the type of multi-
plet (e.g., the pseudo-scalar nonet for N = 3). [t does not specify the member of the
multiplet. This is done by using the quark indices. D; 5, represents the ¢, mem-
ber of the D multiplet, where i and m run over the N flavors. Once we assume the
N? degeneracy of the meson multiplets, this representation is possible irrespectively
of the existence of real quarks. A complete specitication of the external meson
state is given by 10, ,;, p, i) where p and A stand for the momentum and helicity of
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Fig. 1. Anordered b = 1 amplitude Clpg . Gu)-

the meson. We now have to specify the relation between the (7, m) and the (m. 1)
members of the sume multiplet. We adopt the following convention:

ClD; im(p. 1)) = CplDyy. i (p. W) . (N

where Cis the charge-conjugation operator. By taking i = m we see that Cpy is the
charge-conjugation cigenvalue of the V neutral states D; ;. (Note that Cpy is inde-
pendent of { and ) In appendix A we demonstrate eq. (1) assuming that mesons
are actually made of quarks. Tt is clear that any convention which is consistent with
a naive theory of real quarks, can be used for a general theory (with or without
quarks) which satisfics SU(AY and charge-conjugation invariance on the hadronic
level. In our convention (1) the relative phase between the i, mr and the m, {© mem-
bers of the multiplet is determined by charge conjugation. This differs from the
usual convention, in which the phases are determined by requiring standard matrix
clements of the SUNV) generators sandwiched between two states (see, e.g., rel. {3]).
Thus, in ref. [3], Clr% = +a®Y but Cla*y = - {77, whereas in our notation Clr*) =
Ty where ' and 77 denote the ud and the dif members of the multiplet. The
usual convention is useful when one has to use Clebsch-Gordan coefficients. The
advantage of the quark-diagram approach is that these coefficients are unnecessary.
The complete information concerning all SUV) relations is contained in the fol-
fowing statement: The mmplitude of fig. 1 is independent of the indices f, /, ..., &, 1, m.
Namely, if we replace the index £, for example, by ', the amplitude (which now
corresponds to a different process) is unchanged. As long as we work with the quark
basis (namely, the (7, #) states), the amplitude for any given process is just the sum
over all quark diagrams which are consistent with the favor assignment of the
external mesons. The coefticient of cach term is one. Only when we use the
“physical” basis (¢.g., 7% = \/.E [uid — dd |) we have to take the appropriate lincar
combinations, which is cquivalent to using the Chan-Paton fuctors [4]. Another
advantage of our convention is that the SU(N) singlet of the D multiplet is given by
(INM EN, 1D; 7 (in the convention of ref. {3] n = \/2[ (uid — dd )).

In general, there are n! ways of connecting the quark lines of the n external me-
sons. Since we are considering the o = | amplitude, there are only (n - 1)! ways.
Fig. 1 represents one of them. I Vs lurge enough, we can choose ail the indices
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Fig. 2. The charge-conjugation partner of fig. 1 (lyg .. gp)-

i, fo o Ky 4omoto be of different flavors. This specifies the flavor indices of the
external mesons, and their location in the & multiplets is therefore determined.
This defines a physical process, which has the property that the only possible order
that can contribute to it is that of fig. 1. It we view fig. 1 as representing the full

b =1 amplitude with the specified order, we can define it as the b = | approxima-
tion to the physical process we have just specified. Therefore. the behavior of the
quark-diagram amplitude of fig. 1 as a function of the external momenta and helici-
ties is actually determined by the behavior of the amplitude of a physical process
(in the A = 1 approximation).

Let us denote the amplitude of fig. by A gn (only the cyclic order is rele-
vant). We apply charge-conjugation transformation to the physical process that
defines it. The state |1, ;) for example, becomes Cy 1D, ;). Up to the Cpy ... Cyy
factors, we get a new process, which can define the amplitude Ay of fig. 2.
This new wmplitude corresponds to the same external multiplets and the same mo-
menta and helicities, as in 4y G- The only ditference is that the order is reversed.
Nantely, the two amplitudes correspond to two different terms among the (0 1)!
terms. By charge-conjugation invariance we get

Anc...vo = 1CWCp . CGO ) Apgnr - (2)

where piy, My s Py Mg are the same in both amplitudes. We have seen that the
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Fig. 3. The two components of the vertex.
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b = 1 amplitude has (n — 1)! terms. Each can be defined by a different choice of a
physical process. They are related in pairs by eq. (2). When a process is forbidden
by charge-conjugation. these amplitudes cancel in pairs. (Namely. if one amplitude
contributes to this process the one with the reverse order must also contribute.)
The generalization of eq. (2) for an amplitude with b > 1 is discussed in appendix C.
Let us now consider the three-point vertex of the multiplets D. E, and F. The
b = 1 amplitude has two terms, as in fig. 3. We denote the Apgy term by Vy and
the A p by V3. Let us consider the decay process D ~ EF. The ¥ amplitude can
be defined as the o = [ amplitude of the physical process Dy = Ey5 Fsg . We use
the center-of-mass frame of D. and take the initial state to be [J, M) where J is the
spin of D. By angular-momentum conservation

V:’E"‘F(O, P) [(D{,“(¢. 0. —d)| °.

where g = ug — ppand Q = {0, ¢} is the direction of E. If we interchange the direc-
tions of E and F (namely @ = ~Q = {7 — 0. 7 + ¢} ), we get for M =0,

V’l' (Y lf(Q) = TV’l'l-t»h l-'(_Q) i 3)

where 7= (=) is the signature of D.

The point we want to emphasize is that since the quark diagram V is defined in
terms of the amplitude of a physical process, it must satisfy all the constraints im-
posed on this process by the various symmetrics. As we have just seen the angular
dependence of the decay, and therefore the symmetry under  ~ €2, is governed
by the spins of the particles. The relation between V’,'“"' ¥(£2) and V;'"".'“""'(-SZ)
is determined by the parity of the particles. The relation between the various physical
regions (D, 7 = By Fod, Vs > FsdDyn and Fygs — Dy By o) is determined by
the crossing properties of the physical amplitude. To derive all these properties of
the ¥y amplitude, we do not have to draw any quark diagram. These are just the
propertics of the amplitude for the physical process we have chosen.

The quark diagram ¥, (fig. 3b) is defined as the » = [ amplitude for a different
physical process: Dyg = Egg Fas. The multiplets D, E, and £ are the same as in
the physical process that defines the V' amplitude, but we have chosen different
members of the multiplets. The angular-momentum, parity and crossing propertics
of V, are again determined by the properties of the physical amplitude that defines
it. The relation between ¥V and V5 is determined by charge-conjugation invariance,
since the two defining physical processes are related by charge conjugation. Apply-
ing eq. (2) to the three-point function we get

’/2, e "'(Q) = CyCiCy l/ll ] "(Q) ) 4)

where in both sides  is the direction of particle E.
We summarize the different roles of charge conjugation and signature in the fol-
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lowing table:

signature

Vi) «——— 1(-9)

charge c.c.
conjugation

signature

V() «———— Vy(-9)

Charge conjugation relates two different quark diagrams. In one of them the
quark of D goes to E, and in the other it is the antiquark of D which goes to E. We
get one diagram from the other by twisting the quark antiquark lines of each exter-
nal meson. Signature, on the other hand. has nothing to do with quark diagrams.

It relates the values of the amplitude of a given physical process at different points
in momentum space. (One source of confusion is the fact that V5 is sometimes
drawn as in fig. 4. The fact that in fig. 3a particle E is drawn to the left, whereas in
fig. 4 it is drawn to the right, has nothing to do with right and left in real (or mo-
mentum) space. Vyin fig. 3a and V5 in fig. 4 are still related by charge conjugation,
as in eq. (4), provided that particle E is in the same direction, £, in momentum
space.} I E and F are identical multiplets, charge conjugation is related to signature.
This will be discussed in appendix B,

The minimal number of flavors, ¥, which is required in order to define ¥, and
V3 in terms of physical reactions, is two. (For example, Dy g = E 3 Fyg defines
the ¥y amplitude.) For N =1, the deconipusition of the vertex function of Dy g -
Ly g Fuy into the two components ¥V and V4 is unambiguous it the underlying
dynamics is such that one can define the amplitude for the quark of D to go to E.
For example, if we have ficld theory with quarks, the sum of all Feynman diagrams
for the 3-meson vertex, in which the quark line of D goes to E, will define the ¥,
part of the vertex. In that case, eq. (4) is still valid.

We now proceed to the 4-point function. We consider the Regge-exchange dia-
gram of fig. Sa. Since this particle diagram has two vertices, and cach one can be
cither ¥y or V5, there are four quark diagrams: A, = A |.;|:(;”(‘|;{). Ay = Ayorel 5%)

Fig. 4. V5 in a different notation.
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Fig. S, Untwisted and twisted diagrams (in the quark line sense).

Ay = A|.1(;,|,,-(=t’i) and A3 = Ayl ';t;). Using eq. (2). they are related in pairs:
Al R CpCi; Cpydy A = CpCpCi; Cpyd, (5)

and therefore we consider only A and A 5. As before, if M s large enough, we can
define the quark diagram Ay in terms of the physical process By o = Fio Gy
where §, j, &, Lare four different flavors, (It we start from the particle diagram (5a)
then two tlavors are sufTicient, since the diagram is constructed from vertices and
propagators.) We now consider the contribution to A | of a single-Regge exchange,
R. with well-defined signature, 7, and charge conjugation C. I a symbolic notation,
this contribution is given by

AV =B+ 7(-1)] . (6)

The first term, B(-$), is represented in ref. [S] by fig. 6a. It is the part of the
amplitude that has only s-channel discontinuity. The twisted diagram (tig. 6b)
represents the amplitude we get by replacing s = w in the untwisted diagram, namely
B(—-1)*. We refer to this twist as the signature twist. A prior, it has nothing to do
with quark diagrams. The arguments of ret. (5] do not involve the concept of quarks
or of internal symmetries. Only general properties of physical amplitudes are used.
Since the quark diagram A can be defined in ters of a physical process, we could
apply these arguments here. Generally speaking, the signature twist of ref. {S] rep-
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Fig. 6. Untwisted and twisted diagrams (in the signature sense).

resents a transformation in momentum space in which all the invariants across the
twisted reggeon (such as s for the 4-point function) get asymptotically a minus sign
(s = —5). This signature structure has nothing to do with planarity. since the reggeons
are not necessarily exchange-degenerate. The relative sign between a signature-
twisted and a signature-untwisted diagram is determined. as in eq. (6) by the signa-
ture of the exchanged reggeon. Diagrammatically, eq. (6) is represented in ref. [S]
by fig. 6¢.

The quark diagram A, is related to A by replacing the upper Fy vertex by 5.
Using eq. (4) we get

!2{ = CCyp.D):A I;{ . (7)

The contribution of a single-Regge exchange to A and to A has always both
s-channel and w-channoel discontinuities. When we add another Regge exchange, R
with signature 7 and charge conjugation C we get

A ,' - | Az
COREO B (w0 CCLCLBI(-5F + 7(-u)]

R(7.0) BIC-Y+7( u)| CCLCeBT(- 5 + 1 )"

When we take the contribution of both reggeons into account, we get 4| = A 'l{ +
A',z and A, = A'z{ +A§. In order to eliminate the w-channel discontinuity from A4,
we must have 7= —7 together with exchange degeneracy: a = a. f = . In order to
climinate at the same time the s-channel discontinuity from 4 ,, we must have
C = —C. Therefore, in the planar level (b = 1,4 = 0). where we expect A and 4,
to have only the s- () channel discontinuities, each trajectory has to be exchange-
degenerate with another trajectory which has the opposite 7 and the opposite C
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However, no relation between C and 1 is required. The leading trajectory happens
to have Cr = +1, but the same pattern of exchange degeneracy can be achieved with
a pair of Cr = —1 trajectories. At the planar level we get

(=Oonly) Ay= [, Ap=CeCr(Cn) Y. (8)

A and 4, are the untwisted and twisted quark diagrams. The twist in 4, is a quark-
line twist, which is related to charge conjugation. Ouly at the planar level they cor-
respond to the signaturc-untwisted and signature-twisted diagrams (up to the
CCyCr factor).

The generalization to a multiperipheral process with n produced mesons, is
straight forward. For a given set of exchanges. the amplitude has 2"~ ! terms, as in
ref. [5] (each exchanged reggeon can be signature-twisted or not). There are 27!
pairs of quark diagrams. Each quark diagram can be defined in terms of the b =1
amplitude of a physical process (it vV 2> 2). Ouly if we assume exchange degeneracy,
the two types of twisted diagrams coincide, as is shown in ref. [2].

For multiperipheral diagrams with a baryon exchange. the situation is very sim-
ilar. The different quark diagrams, as defined in ref. [6]. can be defined in terms of
physical amplitudes for & 2 3. The angular-momentum (signature), parity and

MI’I

A, A,
(b) (c)

Fig. 7. The quark-line twist for one reggeon exchange.
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crossing properties of the various quark diagrams are governed by those of the cor-
responding physical processes. The relation between the different quark diagrams
is governed by the permutation symmetry of the exchanged baryon under the inter-
change of the flavor indices. For mesons. the permutation symmetry is related to
charge conjugation (appendix A). For baryons, the permutation symmetry is related
to their SU(V) multiplets [6]. A transformation from particle diagrams to quark
diagrams was constructed in ref. [6]. The particle diagrams carried SU(N) indices.
A similar transformation for mesons is constructed in appendix C. The particle dia-
grams carry charge-conjugation indices.

We now consider the n-point function for mesons, in the single-Regge limit
(fig. 7). The reggeon R has charge conjugation Cr. A and 4, are two quark dia-
grams that contribute in that limit. If & is large enough they can be defined. as
usual, in terms of physical processes. The order of the external mesons on the single
boundary of A isM My ... My My oy ... M. For A; the order is M (M, ... My
M, ... My . We want to relate the two amplitudes for the same values of momenta
and helicities (namely, p;. = are the same for 4| and 4, fori =1, ..., n). We use
factorization and apply eq. (2) to the upper vertex. The result is

(ﬁg 7) A2 = C|(Ck+| C”A ! - (())
Actually, the quark diagrams A | and A, are given by summing over R. To pro-
jeet the part of the amplitude which has a definite charge conjugation, C, in the

t-channel we should take the following combination:

A=A+ CChyy v CuAy (10)

[ would like to thank F. Capra, G. Chew and P. Hoyer for useful discussions.

Appendix A
The charge-conjugation convention

In a model. in which mesons are bound states of a quark and an antiquark, the
i~ state of the multiplet D with momentum p and helicity A, can be written as:

I orn
D (p, ) = § oA 8 S E 10y . (A.1)
o fB

b and ot are creation operators of quarks and antiquarks. They satisfy bt = —d7p7,
The indices 7 and j are Nlavor indices, r and s are color indices and N, is the number

of colors. The meson is assumed to be in a color-singlet state; o and § are indices
which specify both the momentum and the helicity of the quurk:jgz,(”"') is the
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wave tfunction of meson D( p /1Y in momentum-spin space. It has a detinite permu-
t.mon svmmetry: jm, = Pl)fN where Py is either +1 or — 1. In the L ~ S scheme,

h=(— - )g where L is the orbital momentum and S is the total spin of the
qu.xrk antiquark pair.

In a quark-line notation, the state b,,ad/wim can be rnprcsumd as ;
Note that this state is minus the ’ia state. since b7 and ¢ anticommute.
This is the reason why we prefer to draw the quark and antiquark lines of the
external mesons in a definite order (as in fig. 3).

We now Jppl)« the charge-conjugation operator C to the state in eq. (A.1). We
use Ch,,aC_ ,Jr,a to get in a standard way

CID,'/'_ (p. h)y = —Pl)iD,,-’ (p. hy. (A.2)

I'(l"‘—’*‘

which is eq. (1) with Cy = - P)y.

Appendix B
ldentical particles

If E and F in fig. 3 stand for the same multiplet (we do not require that the
flavor indices of E and F are the saune, so the two mesons are not necessarily iden-
tical), we can get an extra relation between ¥y and Va V12 (p (. pa) was defined
as the b = Lamplitude of Dy g =~ Eys(pr. b)) Fog (P20 113). By SUN) invariance we
cun change the ﬂuvor labels of tig. 3b and detine V3 "hz(p, pa)asthe b =1 ampli-
tude of D5 = Eg (0 ) Fug (0, ). Sinee B¢ = Fuowe get

(=) 2000 = A  a p ). (B.1)

Using eq. (4) we get

- ha .
(I =F) "” "(/)l pa) = (nlﬂ '(/)2,[),). (B.2)
Choosing ;= ity and comparing with eq. (3), we see that if PP (py, py) # 0.
the meson D must satisty € = 1. Note that it Cpy = ~1 the ¥ amplitude is antisym-

metric under interchanging p /i and pahr;. This does not violate Bose symmietry,
When the two mesons are really identical (all flavor indices are the same) both V,
and V5 contribute, and their sum vanishes by eq. (4).

Appendix C

Quark diagram < particle-diagram transfonnation

We now construct quark diagrams from particle diagrams as in ref. [2]. We con-
sider the most general particle diagram for mesons, with 3-point vertices only. To
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each vertex we assign an arbitrary cyclic order for the three mesons and define ¥/

as the vertex component in which the arrow follows the order. The building blocks
of the diagram are the vertices and the propagators. We assume that both of them
arc on the b = 1 level. This guarantees the OZI rule for the vertex. and the N? degen-
eracy for the propagator (which is needed if we want the flavor indices to flow con-
tinuously along the quark lines [2]). Since the vertex is of one boundary, eq. (4)

is valid. We denote the charge conjugation of the jth external meson by G (= 1. ...,
1). We first consider a given set of internal mesons, with charge conjugation C;

¢ = 1, .... ). The particle amplitude. B. which corresponds to this particular set of
exchanges will be defined as follows: Draw the quark diagram which has only 17
vertices. Give any quark line one flavor index (do not sum over the N flavors in a
quark loop). Calculate the amplitude as a product of vertices and propagators. (We
assumie that the rules for calculating pacticle diagrams in terms of vertices and propa-
gators are given.)

There are 2V different quark diagrams, where v is the number of vertices (each
vertex can be 17y or V). Let g4 be the label for the & vertex. g5 = + corresponds to
Viand ox = — to Va {0} = {0y, .... 0y} is the label of the quark diagram. The B
amplitude has only V' vertices. If we replace the Vy of the & vertex by V5. the am-
plitude is multiplied by k5 = Cyy, Cy;, Cy, Where Dy Eg and Fy are the three mesons
of the vertex k. Therefore, the contribution of the given set of internal mesons to
the quark diagram A (4} is given by B times & for cach vertex & with V3 (g = ).
We observe that two different sets of exchanges which have the same {k} = (k.

&,} . give exactly the same relations between the various quark diagrams. We sum
the B8 amplitudes of all the set of exchanges with the same {k}, to get B i}, (The
suny includes different sets which have the same G for cach propagator, but differ
by other quantum-numbers. It also includes ditferent sets with different G For
each particle toop we can change the sign of all the C; around the loop, withowt
changing the {x}. Note that for any intermediate state in the diagram, the product
1, C,, where r runs over the Purliclcs of the intermediate state, is determined by
{x}.) The contribution of B WY 1o the quark diagram A (4} is given by

A E:} “Mopep o Mo BUY, (C.1)
where
y -
M=+ | 1] 1]. (C.2)
I

The quark-diagram A (o} is defined to be

Ao} = ‘% afl (€.3)
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and the transformation from the particle amplitudes B to the quark diagrams 4 is

V)
Afg) = (Z; Moy Mo, B0 (C.4)
\K

The inverse transformation is

I i
B'x} = = {Z; Mg iy Mo, A g) (C.5)

The A {4} are defined without summing over flavor indices. When this sum is
performed, each quark diagram is multiplied by a fuctor of .V for each quark loop.
To calculate a physical process (given in the quark basis) one has to add all the
A {51 that are consistent with the quark indices without any additional coefficient.

‘The number of particle-amplitudes is 2%~ since the k|, ..., k, are constrained
by the relation Ky « ... -k, = Cy - ... - Cy. There are 2Y quark-diagrams. They are
related in pairs according to

A g1 =Cra. GuA (o) (C.6)

This is the generalization of eq. (2) to any number of boundaries. A1 _g1 and A ()
are related by a ¥V« V5 transformation, which interchanges the roles of quarks
and antiquarks. Therefore, they have the same boundary structure, but the order of
external mesons afong each boundary is the opposite.
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