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The distinction between charge conjugation and signatttre in the analysis of quark 
diagrams is discussed. The signature twist is different fro111 the quark-line twist (v,'hich. 
l~r mesons, is related to charge conjug.ltionj. They coincide only in the planar level. 

"Is the twist on a meson l ine related to charge conjugatiol, or to signature?" This 
questicm is a well-known source of  confi,sion. We hope to clarify it in this paper. 

Let i,s omsidcr  a one-boundary atuplilt,de with n external mesons which have a 
definite order ahmg the bet, t e a r y  (fig. I ). We do not assl,mC anything concerning 
the l, ufl,bcr of  handles. Therefore, this amplitude ,nay represent the planar a,npli- 
rude [ I I will, the specified order (m,mely, the h = I , h  = 0 part of the mpoint  ft,nc- 
lion). The :,mplilude may also represcql any arbit ,ary quark diagr:,m.'or a sum over 
fllally quark diagrams, with h = I. (The qtf:,rk diagrauls can be defined as ill rcf. [21 . 
We start wilh particle diagrams, whose lines represent hadrons, :rod then draw the 
corrcspouding q0ark alia,grams. The particle diagrams may be inulti-Rcggc diagrams, 
life diagrams of the du:,l models. ~b "~ di:tgrams where the field q5 represents a meson, 
reggeon-field-theory diagrams, etc.) 

We assume that tile spectrum of  the external mesons is give,, by b = I diagrams. 
Assuming SU(,V) invariauce, all mestms appear in N a degenerate multiplets (only 
when we include tile b = 2 terms of  tile propagator,  the SU(N) singlet is uot degen- 
erate with the (N = - I) multiplet).  We specify tile states of  the exte,0|:,l mesons in 
the following way: Tile letter D, I'~)r example,  in fig. I stands for the type of  mt,lti- 
plet (e.g., tile pset,do-scalar nonct for N = 3). It does not specify tile tnelnbcr of  the 
nndtiplet. This is done by using the quatrk indices. Di. , ,  represents the qiq , ,  me,n- 
ber of  tile D multiplct,  where i and nl run over the N l]avors. OllcC we :lsstfll,e tile 
N z degeneracy of  tile nleson mt,ltiplets, this represent:ilion is possible irrespectively 
of  the existence of  real quarks. A complete specification of  the external nlesoft 
state is given by IDi . , ,p .  h )  whcre p and It stand for the momcntt,nl and hclicity of  
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the auspices of  the Division of  I'hysic:d Research. 
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Fig. l. An ordered b = l amplitude (,.ll) E ... (;H 1. 

the meson. We now have to specit~' the relation between the (i. ~t} and tile (m, [-) 
members of  the same nndtiplet .  We adopt the following convention: 

CIDi. i~z( p. It)) =- CDID,, , . f  (p .  h)> . (1)  

where C is tile charge-conjt,gation operator.  By taking i = m we see tlult CI~ is the 
charge-conjugation eigenvalue of  tile ,Y neutral states Di. i . (Note that CD is inde- 
pendent o f t  and m.) In appendix A we demonstrate eq. (1) assunling that mesons 
arc actually made of  quarks, It is clear that any convention which is consistent with 
a naive theory of  real quarks, can be used fi~r a general theory (with or without 
quarks) which satisfies SU(A") and charge-conjugatitm inw~riance on the hadrtmic 
level. In our convention ( I ) tile relative phase between the i, m and live m. t" mem- 
bers of  the multiplct is determined by charge conjugation. This differs f'ro,vl tile 
ust,:d convention, in which the phases are determined by requiring st:mdard tnatrix 
dements  of the St I{N) generators sandwiched between two states {see, e.g., rel'. 13 I). 
Thtts, inv ref. 131, ('lrr °) = +trr °) but CIrr ')  = • Irr-). whereas i,I ot,r notation Clrr ~) = 
+lrr-) where rr ~ .'l,ld rr- de,lore the uif and the tilt members of  the multiplet. The 
ust,al convention is usefv,I when c, ne has tt) use Clebsch-C;ordan c(~efi'icients. The 
advantage of  the quark-diagram approach is th:,t these coefficients are t,,mecess:try. 
The complete inl \mnat ion concerning all SUIN) relati~ms is contained in the for  
lowing statement:  The amplitt,de of  fig. I is independent of the indices g j, .... k , / ,  m. 
Namely, if we replace the index 1. for exanlple,  b y / ' .  the amplitude (which now 
corresponds to a different process} is unchanged. As hmg as we work with the quark 
b:,sis (vlamely, live (g i~) states), the amplitude for any given process is just tile stltn 
over all quark diagrams which are consistent with the Ilavor :,ssigntnent of  the 
external mesons. The coefficient of  each term is one. Only when we use tile 
"'physical" basis (e.g.. rr ° = x/~ lug - d d  l) we have m take the . ,ppmpriate linear 
combinations,  which is equivalent to t, sing the Chan-Paton factors I41. Another  
advantage of  our conventiovl is that tile SU(N} singlet of  the D nmltiplet is given by 
(I/x/~'v') ".'.iN= l lDi. i- ) fin the convention o f  re{'. [31 r/= . ~  tuff - d f f  )1. 

hi general, there ;,re tt? ways of  connecting tile quark lines of  the t~ extern:LI me- 
sons. Since we are considering the b = I amplitude, there are only (tt - 1)? ways. 
Fig. I represents one of them. I f N  is large enough, we can clmose all tile indices 
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Fig. 2. The dlarge-conjugation partner of fig. I (.-ttl G ... i;i)l. 

L j. .... k . / .  m to be of  different flavors. This specifies tile flavor indices of  the 
external mesons, and their location in the N:' mt, ltiplets is therefore determined.  
This defines a physical process, which has the property that the only possible order 
that can cout t ibu te  to it is that t)f fig. I. If we view fig. I :is representing the full 
b = I alupli tude with the specified order, we can define it as the b = I approxima- 
tion t~ file physical process we have just specified. Therefore. tile behavior of  the 
quark-diagr;uu auq~litudc of fig. I as a funcl ion of the exlermd momen la  and hclici- 
lies is ,nctually t letermiued by the bch:wior of  the ampli tude of  a physical process 
(in tile h = I approxiluali~m). 

Let us dcmH¢ tile amplitt ,dc of  fig. I by ,4 DI.:...(;II (only the cyclic older  is rele- 
v:mt). We apply charge-ctmjug:ltitm tr:msformation to the Physical process Ihat 
d¢l]ncs it. The sl:lle IDi. , ,  > for ex:unfflc, becomes Ci) l l ) , , . i  ). l ip  to the ('D ..- Ctl 
factors, we gel a new process, which cau dcfhle the amplitude A I1(;. . .1(I) Of fig. 2. 
This new ampli tude corresp(mds Io the same exterm, I nmlt iplcls  :rod the sam¢ ulo- 
mcula and hclicilies, as in el I)t.:...{;~i. The only difference is lhal the order is reversed. 
Namely, the two ampli tudes correspond to two different Icrlns mmmg lhc ( ,  I)! 
terms. By chatgc-conjug:ttion itwariaulcc we gel 

AIu; . . .H~ = [CI~CI: ... G ; C l l ]  .'ll~t:...~al , (2) 

where Pp ,  t ip . . . . .  PlI, hll  ;.ire the same in both amplitudes.  We have seen that the 
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l:ig. 3. The two comp(ment~ of tile vertex. 
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b = I amplitude has (n - !)! terms. Each can be defined by a different choice of  a 
physical process. They are related in pairs by eq. (2). When a process is forbidden 
by charge-conjugation, these amplitudes cancel in pairs. (Namely. if one amplitude 
contributes to this process the one with the reverse order must also contribute.) 
The generalization ofeq.  (2) for an amplitude with b > ! is discussed in appendix C. 

Let us now consider the three-point vertex of  the multiplets D. E, and F. The 
b = 1 amplitude has two terms, as in fig. 3. We denote theADEv term by V l and 
the A t=Et) by V 2. Let us consider the decay process D ~ EF. Tile V t amplitude can 
be defined as the b = I amplitude o f  the physical process Duff -" Eus Fsa. We use 
tile center-of-mass frame of  D. and take the initial state to be I J, AD where J is the 
spin of  D. By angt, lar-monlentum conservation 

v~E.J,v(o, ~,) ~ [co {,~,(¢,. o, -,~)1" 

where ta = taE -- tat: and g2 = (0, ~} is tile direction of  E. If we interchange the direc- 
tions of  E and F (namely ~2 --* - ~  = {rr - 0, *r + ¢k} ), we get for M = 0, 

I/~ to,I, ,: (~2) = r I/~ 1-,I, v(_~l  ) ,  (3) 

where r = ( - ) ' I  is tile signature of  D. 
Tile point we want to emphasize is that since tile quark diagram V t is defined in 

terms of the amplitude of  a physical process, it must satisfy all the constraints im- 
posed on this process by the various symmetries. As we have just sccn the angular 
dependence of  the decay, :rod therefore the symmetry under ~ . . . .  ~2, is governed 
by the spins of  the particles. The relation between V*~i':'/al"({~) and VThl':'-ht"(-S~) 
is determined by the parity of  the particles. The relation between tile various physical 
regions (l)ua" -~ l:u.¢-F~a, Esff -, Fsa'Ddg and Fd. C ~ l)dffEuff- ) is determined by 
the crossing properties of  the physical amplitt,de. To derive ;111 these prt~pcrties of  
tile V l amplitude, we do not have to draw any qt,ark diagra,n. These arc just the 
properties of  the amplitude for the physical process we have chosen. 

The quark diagram l," 2 (fig. 3b) is defiued as tile b = 1 amplitude [\~r a different 
physical process: Ddff -+ EsgFd~-. The mt,ltiplets D, F,, and F are the same :,s in 
the physical process that defines the V l amplitude, but we have chosen different 
members of  tile multiplets. Tile angt, lar-umulentt, m, parity and crossing properties 
of  Y2 are again determincd by the properties of  tile physical amplitude that defines 
it. The relation between V t and V'-~ is determined by charge-conjugation i,lvariance, 
since the two defining physical processes are related by charge conjugation. Apply- 
ing eq. (2) to the three-point function we get 

V'~ ,.:.h t,.(~ 2) = CD CE Cv VJ~ ,.:.h i,(~), (4) 

where in both sides ~ is tile direction of  particle E. 
We stmunarize the different roles of  charge conjugation and signature in tile fol- 
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lowing table: 

charge 
conjugation 

signature 
vt(~) , , v~(-~) 

C.C. 

signature 
v~(~z) < .  , v~(-~) 

Charge conjugation relates two different quark diagrams. In one of  them tile 
quark of  D goes to E, and in tile other it is tile antiquark of  D which goes to E. We 
get one diagram from tile other by twisting tile quark antiquark lines of  each exter- 
nal meson. Signature, oil tile other haud, has nothing to do with quark diagrams. 
It relates the values of  the atuplitude of  a given physical process at different points 
in momentum space. (One source of  confusion is tile fact that V z is sometimes 
drawn as in fig. 4. The fact that in fig. 3a particle E is drawn to the left. whereas in 
fig. 4 it is draw,i to the right, has nothing to do with right attd left in real (or mo- 
mentum) space. I/" t in fig. 3a and V 2 in fig. 4 are still related by charge conjugation, 
as in eq. (4), provided that particle E is ill tile same direction, [2, in Ulomentuu'l 
space.) If E and F are ideatical ,nultiplets, charge conjugation is related to  signature. 
This will bc discussed in appendix B. 

The minimal number of  tlaw~rs. N. which is required in order tt) define V t and 
I," z ill terms t)f physical rez, ctions, is two. (For cxantplc, I)ut T -, l'~u~" i:d~ defines 
tile V t amplitude.) For N = I, the decomposition of  the vertex ft,nction o f  Du~" -" 
l!uff Fur i" into the two componcnts V I and V 2 is unambiguous if the underlying 
dynamics is such that one can define the aluplitt,dc for the quark of  D to go to E. 
For example, if we have field theory with quarks, the stun of  all Feymn:m diagrams 
fi)r the 3-meson vertex, in which tile quark line of  D goes to 1", will defi,le the V I 
part of  the vertex. Ill that case, eq. (4) is still valid. 

We now proceed to the 4-point fl, nction. We consider tile l;',eggc-exchange dia- 
gram of  fig. 5a. Since this p:,rticle diagram has two vertices, and each one can be 
either V I or V 2, there are four qu.'lrk diagr:mls: A t : A I.:V(;tl(~[), A I = A H(; H':(V 2v2), 

s s E F d~u 

du 
D 

Fig. 4. V 2 in a different notation. 
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Fig. 5. Unt~vi,qcd and twisted diagram~ (in the quark line sense). 

A z -: A t.:(:H,.(I]]) a,,d A,  - A  I.lu;u:(~).  tMt,g eq. (2). they arc related i,, pairs: 

i i l  = CI.:CI.G;C~IA ~ , A 2 ~ C~:CI. Ct;CHA 2 , (5) 

and therefore we c,.msidc,' only A t and A :,. As before, i fN is large ¢mmgh. we can 
del]nc tile quark diagram/1 I ill lerllls of  the physical process l!/i I lil " I:ik (;hi 
where i,/, k, I are I\mr different I'[awms. {If we start from the pzHticle diagram (5a) 
then two tlaw~rs :,re sufficient, since the diagra,n is constructed from vertices and 
propagators.} We now consider the coutribt,tion t~/I t t)f a single-Regge exchange. 
R. with well-defined signall,re, r, and ch:,rge conjugation/S'. In a symbolic notation, 
this contrilmtion is given by 

A I,~ = ~ l ( - s )  ~' + r (  " ) " 1  • ( 6 )  

The first term, ~(.-s)cL is represented ill ref. [5] by fig. 6a. It is tile part of  the 
amplitt,de that has truly s-chain|el disctmlinuity. The twisted diagram (fig. ¢~b) 
represents tile :unplitude we get by repl:tciug s ~- u in the untwisted diagram, namely 
13(-u) '~. We refer to this twist as tile sigmtture twist./I prior i ,  it has nothing to do 
with quark diagrzllllS. The argulllCllts of ret'. [51 do not involve the concept t:q'tluarks 
or of  internal syuunetrics. Only general properties of physical aml~litt,des tire used. 
Since the quark diagram A I can be defined ill terms of a physic:,l process, we could 
apply these arguments here. Generally speaking, the signature twist of  rcf. 151 rep- 
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Fig. 6. Untwisted and twisted diagrams (in the signature ~ensc). 

resents a trimsfornlation in tnotneutum space in which all the invariants across the 
twisted reggeon (such as s for the 4-poin! t tmctiou) get asymptotically a minus sign 
(s - - s ) .  This signature structure has nothing to do with planarity, since the reggcons 
are not necessarily exchange-degenerate. The relative sign between a signatt, re- 
twisted and a signature-unlwistcd diagram is determined,  as in eq. (6) by the sigml- 
turc of  the exchanged rcggcon. I)iagrammatically, cq. {6) is reprcscnlcd in rcf. 151 
by fig. 0c. 

The qu:,rk diagram A2 is related to A t by replacing the upper 1" I vertex by V 2. 
1Jsin,,. .., ct I. ( 4 )  we get 

A ,~ : CCvDI:A. R! . (7) 

The contribt, tion of  a siuglc-Reggc exchange Io/1 I ,rod to A 2 has alv.'ays both 
s-channel and u-ch,mnel discontinuilies. When we ;tdd :mother Reggc exch:mge./~ 
with signatt,re r a n d  charge conjugation ~ 'we get 

:ll A 2  

. . . . .  /e-~r. C) ~[( £si" + r(-,,)"l cc~:c~..;3[(-.~)" +':¢ ")"1 

~(rl ~ ~l-(-s)'r + -R ,,Y'I ?:c,:c,..5l(-.,)a + ,:¢-,,)<;I 

When we take tile contribt, tiou of  both reggeons into account, we get A l = A ~  + 
A t  :rod A?. = A~ ~ + A~ "(. In order to eli,,,i,,ate the u-chan,,el  disco,,ti, ,uity fr,,,,, A ,. 
we must have r = - r  together with exchange degeneracy: 0~ = 0~. if=/3. In order to 
eliminate at the same time the s-channel discontint, ity from A 2. we rot,st have 
C' = -C.  Therefore, in the planar level (h = I. it = 0). where we expect :1 t and A2 
to have only the s- (u-) channel disctmtint, ities, each trajectory has to be exchange- 
degenerate with am~ther tr:qectory which has the opposite r and the opposite C 
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However, no relation between C and r is required. The leading trajectory happens 
to have Cr = +1, but the same pattern of  exchange degeneracy can be achieved with 
a pair o f C r  = - I  trajectories. At tile planar level we get 

q, =0 only) At = ~_ , A2 :CECv(Cr) ~ • (8) 

A l and A 2 are the untwisted and twisted quark diagrams. The twist in A : is a quark- 
line twist, which is related to charge conjugation. Only at tile planar level they cor- 
respond to the signature-untwisted and signature-twisted diagrams (up to the 
CECI:Cr factor). 

The generalization to a multiperipheral process with n produced mesons, is 
strai~lt forward. For a given set of  exchanges, the amplitude has 2 " - t  terms, as in 
ref. [51 (each exchanged reggeon can be signature-twisted or not). There are 2 n-  t 
pairs of  quark diagrams. Each quark diagram can be defined in terms of  the b = 1 
amplitude of  a physical process ( i fN/>  2). Only if we assume exchange degeneracy, 
the two types of  twisted diagrams coincide, as is shown in ref. [21. 

For mulfiperipheral diagrams with a baryon exchange, the situation is vcry sim- 
ilar. The different quark di:lgrams, as defined in rcf. [6 I, can be tlefitmd in terms of  
physical amplitttdes l \ )r  N >1 3. The angnlar-mometltunl (signature), parity and 

t 

(a( 
M,q M,_ I 

M ,..~l M . . . .  f ~  M. 

Mk M I i "C 
A~ A z 
(b) (c) 

Fig, 7. The quark-line twist for one reggeon exchange. 
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crossing properties of  the various quark diagrams are governed by those of  the cor- 
responding physical processes. The relation between the different quark diagrams 
is governed by the permutation symmetry of  the exchanged baryon under the inter- 
change of  the flavor indices. For mesons, the permutation symmetry is related to 
charge conjugation (appendix A). For baryons, the permutation symmetry is related 
to their SU(N) multiplets [61. A transformation from particle diagrams to quark 
diagrams was constructed in ref. [6]. The particle diagrams carried SU(N) indices. 
A similar transformation for mesons is constructed in appendix C. The particle dia- 
grams carry charge-conjugation indices. 

We now consider the n-point function for mesons, in the single-Regge limit 
(fig. 7). The reggeon R has charge conjugation C~. A l and A2 are two quark dia- 
grams that contribt, te in that limit. I f N  is large enough they can be defined, as 
ust, al. in terms of  physical processes. The order of  the external mesons on the single 
boundary ofA t is M t h l 2  ... ilia M k  , t ... M,~. For A 2 the order is h l l i l l  2 ... ilia 

ilI,a ... Mk + 1. We want to relate tire two amplitudes for the same values of  momenta 
and helicities (namely. l~i. ]t i are the same for A I and A z. for i = I ..... n). We t,se 
factorization and apply eq. (2) to the upper vertex. Tire result is 

(fig. 7) A 2  = C R C k ~ I . . .  C , , A t  . (9) 

Actually, the quark diagramsA I and A-, are given by summing over R. To pro- 
ject tire part of  the amplitude which has a definite charge conjt,gation, C. in the 
t-channel wc should take the following combin;,lion: 

A (' =:Ai + ( 'Ck, I ' "  C n A 2  • (I0)  

I wot,ld like to th:,nk F. Capra, (;. Chew and I'. Iloyer for t,seful discussions. 

Appendix A 

T h e  c h a r g ~ c o n / u g a l i o n  c o n v e n t i o n  

h| a model, in which mesons are bound states of  a quark and :m antiqttark, tire 
i f  state of  the multiplet D with nltmlcnttmr p and helicity It, can be written as: 

IDi/ (p, I t))= ~ I 6 fD¢~,,;oht ,~t m 

c~,O 

b t and d t are creation operators of quarks and antiquarLs. They satisfy bid t = --dtb t. 
Tile indices i and j are llavor indices, r and s are coh)r i,ldices and N c is the number 
of  colors. The meson is assumed to be in a color-singlet state; ct and/3 are indices 
which specify both the mome,ltt,m and the helicity of  the q u a r k ; ] ~  (p't') is the 
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wave funct ion of  meson D(p. It) ill mon len tum-sp in  space. It has a definite permu- 
tat ion s y l u m e t r y : ) ' ~  : PD])t~ where PD is either +1 ,.)r - I .  In tile L - S scheme. 
PI) = (-)/ '~ _)s~-t where L is the orbital  l uomcn tun l  and S is the total spin of the 
quark-ant iquark pair. 

+ + i r a  .... In a quark-line no ta t ion ,  the s!ate bi,~d/s~310) Call be represented as : s ~ 
Note that this state is minus  tile ~. s r ~ " a " + t " ~' ' _ st' te. s m c e h  a n d d  an t icommute .  
This is tile reason why we prefer to draw the quark and ant iquark  lines of  the 
external mesons in a defini te  order (as ill fig. 3). 

We now apply the charge-conjugation operator  C to the state in eq. (A. 1 ). We 
use Chfrc~C - t  =d+i~c, to get in a s tandard way 

CtDi f  (p,  tt)) : -PD[Di i  (p, It)) , (A.2) 

which is cq. ( I ) with Ct~ : - Pp. 

Appendix B 

Identical partich's 

If E and F in fig. 3 stand for the same mult iplct  (we do not require that the 
flavor indices of  E and F are tile same, so tile two mesons arc not necessarily idea- 

L "Jr I ,h 2 tical), we can get an extra relation be tween V I alld I," 2. , I (P t. Pz) was defined 
as the b = I a lnpl i tudc o f / ) u ~  ~ E u s ( P  I. h I )Fsd (P2 ,  h2). Bv SU(N) invar iancc  we 

. .~" . " . i t  I II  2 " can change tile flavor labels of  hg..~1) and dehne  I~ 2 " (I~'1. P:,) as the h = I amph- 

tude of  Du~l ~ --,. 1;'.~ (p I, It I ) I"u.~ Q~2, h2). Since [;'u.~ := P'us', we get 

(1'[ = 1:) [)l ' l 'hZ(I , t . l ,2)  = |'~2"hl(p2, p t ) .  ( ILl )  

t lsing cq. (4) wc get 

l "tt l , h ~  , ..at ~ , h  I e 
(1! = F) " t  "(Pt .  Pz) = C t ~  t" f f ~ , , P l ) .  (B.2) 

Choosillg h I = h z :lnd Ct>lllp:nirig with eq. (3), wc see that if ["~'h(pl, P2) -/= 0, 
tile meson D must  s:lti:;fy C = r. Note that i fCD = --1 tile V I ampli tude is antisym- 
metric under  interchanging p th t  and p2h2.  This does not  violate Bose symmetry,  
When the two nlesons are really identical (all flawlr indices are the same) both VI 
and I" 2 cont r ibu te ,  and their sum vanishes by cq. 14L 

Appendix  C 

Quark diagram ~ particle-diagram trans f imnathm 

We now const ruct  quark  diagrams from particle diagrams as ill rcf. [21. We con- 
sider the most  general particle diagram for mesons,  with 3-point vertices only. To  
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each vertex we assign an arbitrary cyclic order for the three mesons and define I" t 
as the vertex component  in which the arrow follows the order. Tile building blocks 
of  the diagram are the vertices and the propagators.  We assume that both of  them 
are on the b = 1 level. This guarantees the OZI rule for the vertex, and the N 2 degen- 
eracy for the propagator (which is needed if we want the flavor indices to flow con- 
tinuously along tile quark lines [2]). Since the vertex is of  one boundary,  eq, (4) 
is valid. We denote tile charge conjugation of  t i le / th  external meson by C / ( / =  1 . . . . .  
n). We first consider a given set of  internal mesons, with charge conjugation Ci 
(i = 1 . . . . .  /). The particle amplitude. B, which corresponds to this particular set of  
exchanges will be defined as follows: Draw tile quark diagram which has only I" I 
vertices. Give ally quark lille one flavor index (do not sum over the N flavors ill a 
quark loop). Calculate the ampli tude as a product of  vcrtices and propagators. (We 
assume that tile rules for calculating particle diagrams in terms of  vertices and propa- 
gators are given.) 

There are 2 ~' different quark diagrams, where v is the number of  vertices (each 
vertex carl bc I" I or I/2). Let ok be the label for the k vertex, o/, = + corresponds to 
l/I and o,~ = - to V 2. (o} = {ol . . . . .  ou~ is the label of  the quark tliagram. The B 
amplitude has only l ' i  vertices. If we replace the V l of  the k vertex by V z, the am- 
plitude is multiplied by Kk : Cl~kCt:kCt:k where D k, Ek and F k arc the thrcc mesons 
of tile vertex k. Therefore, the c~mtribution of  tile given set of  interual mesons to 
tile quark diagram A {a~, is given by B times ~ for each vertex k with V 2 (¢i, . . . .  ). 
We observe that two different sets of exch:mges which have the same {K "~" = {~:t ... 
~u ~, , give exactly the same relations between the various quark di:lgralns. We sum 
tile B amplitudes of  all tile set of  exch;mges with the stone {h:~. Io ge t / /6~ ' .  (The 
sum itlclutles different sets which have the same Ci for e,lch propagator, but dit'lZ'r 
by other qtl:mtuuHmmbers.  It :dso includes diffcrcllt sets with different Ci. For 
each particle loop we can oh:rage tile sign of  all the Ci around lhe loop, without 
changing tile {K }. Note that for any intermediate state in the di:lgram, the product 
lit Cr, where r runs over the ~:lrticlcs of  the intermediate st:lie, is determined by 
(K }.) The contribution of//~'~) to tire quark diagranl A (a'~ is given by 

A {'<} ~h/,l ,¢ 1 hl,,oKuli (K} (C.I)  (,,} . . . .  

where 

+ _ 

M = + 1 I (C.2) 

- I - I  

The qu:lrk-diagranl A {o} is defined to be 

A(,,'~ - ~ A (~) ( ¢ . 3 )  
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and the transformation from the particle amplitudes B to the quark diagrams A is 

MolKt ,.. Mo~t ,B  ' ~  (C.4) A {o~ = (,,~ 

The inverse transformation is 

B [ K }  - ~v l~lOlr, l ... M o e g ,  A ,~o) • (C.5) 

The A {o) are defined w i thou t  summing over flavor indices. When this sum is 
performed, each quark diagram is mult ip l ied by a factor of ,V for each quark loop. 
To calculate a physical process (given in the quark basis) one has to add all the 

A {,,~, that are consistent with the quark indices without any additional coefficient. 
The nvmber of particle-amplitudes is 2 v-  I since the ~: i ..... Ko are constrained 

by the relation ~ t " ... " ~:v = Ct • ... • C, .  There arc 2 ') quark-diagrams. They are 
related in pairs according to 

A ',i-0} = Ct ... C,,A (o} • (C.6) 

This is the generalization of eq. (2) to any number of bovndaries. A g-o'. and A (e} 

arc related by a V I "; V 2 transformation, which interchanges the roles of quarks 
and antiquarks, Therefore, they have the same boundary slrt,ctt,re, bt, l the order of 
external mesons ahmg each boundary is the opposite. 
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